Heuristic Proof of Itō's Lemma

by Fabrice Douglas Rouah www.FRouah.com www.Volopta.com

The general Itō Process is given by the SDE

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t \tag{1}$$

Define the function $f(X_t, t)$. Then the 2nd order Taylor series expansion for f is

$$f(X_{t+dt}, t+dt) - f(X_t, t)$$

$$= \frac{\partial f}{\partial t}(dt) + \frac{\partial f}{\partial X_t}(dX_t) + \frac{1}{2}\frac{\partial^2 f}{\partial t^2}(dt)^2 + \frac{1}{2}\frac{\partial^2 f}{\partial X_t^2}(dX_t)^2 + \frac{1}{2}\frac{\partial^2 f}{\partial t \partial X_t}(dX_t dt).$$

Hence

$$df(X_t, t) = \frac{\partial f}{\partial t}(dt) + \frac{\partial f}{\partial X_t}(dX_t) + \frac{1}{2}\frac{\partial^2 f}{\partial X_t^2}(dX_t)^2 + \frac{1}{2}\frac{\partial^2 f}{\partial t \partial X_t}(dX_t dt)$$
(2)

since $(dt)^2 = 0$. Now substitute dX_t from equation (1) into equation (2) and use the fact that $dW_t dt = 0$ and $(dW_t)^2 = dt$.

$$df(X_t, t) = \frac{\partial f}{\partial t}(dt) + \frac{\partial f}{\partial X_t}(\mu dt + \sigma dW_t) + \frac{1}{2}\frac{\partial^2 f}{\partial X_t^2}(\mu dt + \sigma dW_t)^2 + \frac{1}{2}\frac{\partial^2 f}{\partial t \partial X_t}(\mu dt + \sigma dW_t)dt = \frac{\partial f}{\partial t}(dt) + \frac{\partial f}{\partial X_t}(\mu dt + \sigma dW_t) + \frac{1}{2}\frac{\partial^2 f}{\partial X_t^2}(\sigma^2 dt).$$

Rearrange terms to get Itō's Lemma

$$df(X_t, t) = \left(\frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial X_t} + \frac{1}{2}\sigma^2 \frac{\partial^2 f}{\partial X_t^2}\right) dt + \left(\sigma \frac{\partial f}{\partial X_t}\right) dW_t$$

where $\mu = \mu\left(X_{t}, t\right)$ and $\sigma = \sigma\left(X_{t}, t\right)$ is written for notational convenience.